Entdecken Sie diesen Podcast und vieles mehr

Podcasts sind kostenlos und ohne Abonnement verfügbar. Außerdem bieten wir E-Books, Hörbücher und vieles mehr für nur $11.99/Monat an.

053 — Data Science und Machine Learning, Hype und Realität — Teil 1

053 — Data Science und Machine Learning, Hype und Realität — Teil 1

VonZukunft Denken – Podcast


053 — Data Science und Machine Learning, Hype und Realität — Teil 1

VonZukunft Denken – Podcast

Bewertungen:
Länge:
63 Minuten
Freigegeben:
21. Feb. 2022
Format:
Podcastfolge

Beschreibung

In dieser Episode ist wieder Dr. Lukas Lang zu Gast. Wir sprechen über Data Science und Machine Learninig (auch »artificial intelligence« genannt). Das ist ein Themenbereich, der sehr viel Potential für unsere Zukunft hat, aber wie alle diese Themenbereiche auch eine Menge an Gefahren, Herausforderungen und Hypes generiert.
Lukas ist ein perfekter Gesprächspartner für dieses Thema, weil er sowohl in der Spitzenforschung tätig war als auch in der industriellen Praxis mit diesen Themen beschäftigt ist. Diese Mischung scheint mir bei komplexen technischen Fragestellungen und Problemen sehr nützlich zu sein.
Lukas hat nach seinem Studium der Informatik eine Promotion im Spezialgebiet Computational Science gemacht. Anschließend war er mehrere Jahre in der universitären Forschung im Bereich der mathematischen Bild- und Datenanalyse tätig, zuletzt an der Universität Cambridge. Seine Arbeit hat Anwendungen in der medizinischen Bildgebung, in der Molekular- und Zellbiologie, und in der Computer Vision.
Derzeit leitet er den Geschäftsbereich »Data Science and AI« eines Spin-Offs des internationalen Industriekonzerns Voestalpine. Sein Team arbeitet an der Umsetzung von Daten-Projekten in der Erzeugung und Verarbeitung von Spezialmetallen, und am Aufbau eines globalen Data Science Programms für die Produktionsstandorte.
Wir haben dieses umfangreiche Thema in zwei Episoden aufgeteilt:
In der ersten Episode beginnen wir das Thema Data Science einzuführen, auch anhand einiger Beispiele, beginnend mit historischen Beispielen sowie Anwendungsfällen der heutigen Zeit. Wir spannen dabei den Bogen von Tycho Brahe und Florence Nightingale bis zu modernen Sprachassistenten und Entscheidungsunterstützung im Militär und zivilen Bereich.
Dann gibt Lukas einen Überblick über wesentliche Prinzipien und Begriffe, die in diesem Zusammenhang immer wieder auftreten, wie Datascience, die Rolle der klassischen Statistik, Modellierung, Visualisierung, EDA, AI, KI, machine learning, multivariate statistik, Datenqualität und vieles mehr. 
Wir sprechen dann über die These die seit einiger Zeit im Raum steht, dass man dank Daten und »AI« ja keine Modelle, keine Theorie mehr benötigt — The End of Theory —, sondern einfach aus Daten lernt und das wäre hinreichend für die wissenschaftliche Betrachtung der Welt.
Wir diskutieren dann Möglichkeiten, Geschäftsmodelle und Grenzen von Machine Learning und Data Science. Wer trifft heute überhaupt Entscheidungen und was ist die Rolle und Funktion eines Data Scientists? Sollten Menschen immer das letzt Wort bei wesentlichen Entscheidungen haben? Ist das überhaupt (noch) realistisch? Welche Rolle spielen regulatorische Maßnahmen wie das aktuelle EU-Framework?
In der zweiten Episode werden wir darauf aufbauend die Frage stellen, wie viel der aktuellen Behauptungen in diesem Feld Realität und wie viel Hype ist. Was können wir in der Zukunft zu erwarten — sowohl im positiven wie auch im negativen? Was sind dominierende Forschungsfragen und wo Grenzen liegen, unerwartete Effekte auftreten, und welche ethischen Fragen durch diese neuen Möglichkeiten zu diskutieren.

xkcd Cartoon
Konkret gibt es das Spannungsfeld zwischen Datensparsamkeit und der Idee alles zu sammeln, weil wir das irgendwie in der Zukunft für uns nutzen können. Aber will der Data Scientists überhaupt in Daten untergehen? Führen mehr Daten zu besseren Entscheidungen?
Wir diskutieren wieder anhand konkreter Beispiele für gute und problematische Anwendungen wie predictiver Policing, Mapping und »KI« für militärische Dronenpiloten.
Welche individuelle Verantwortung leiten wir daraus für Techniker ab? Wie geht Lukas selbst mit diesen Herausforderungen um? 
Referenzen
Lukas Lang
Persönliche Webseite von Lukas

Andere Episoden
Episode 40: Software Nachhaltigkeit, ein Gespräch mit Philipp Reisinger
Episode 37: Probleme und Lösungen
Episode 32: Überleben in der Datenflut – oder: warum das Buch wichtiger ist als je zuvor
Episode 31: Software in der modernen Gesellschaft – Ge
Freigegeben:
21. Feb. 2022
Format:
Podcastfolge

Titel in dieser Serie (96)

Woher kommen wir, wo stehen wir und wie finden wir unsere Zukunft wieder?