Entdecken Sie diesen Podcast und vieles mehr

Podcasts sind kostenlos und ohne Abonnement verfügbar. Außerdem bieten wir E-Books, Hörbücher und vieles mehr für nur $11.99/Monat an.

Minimalflächen

Minimalflächen

VonModellansatz


Minimalflächen

VonModellansatz

Bewertungen:
Länge:
59 Minuten
Freigegeben:
15. Dez. 2016
Format:
Podcastfolge

Beschreibung

Lorenz Schwachhöfer ist seit 2003 Professor für Mathematik an der TU Dortmund. Gudrun kennt ihn aus ihrer Zeit als als Hochuldozentin dort (2004-2008). Seinen kurzen Gastaufenthalt in der AG von Prof. Tuschmann in Karlsruhe wollten die beiden ausnutzen, um ein Podcast-Gespräch zu führen. Das Forschungsgebiet von Lorenz Schwachhöfer gehört zur Differentialgeometrie. Deshalb dreht sich ihr Gespräch um zentrale Begriffe in diesem mathematischen Gebiet zwischen Geometrie und Analysis: Die Krümmung und das Finden von Minimalflächen. Der Begriff Krümmung kommt in unserer Alltagssprache vor. Die Mathematik muss das Konzept von "gekrümmt sein" nur klar fassen, um damit präzise arbeiten zu können. Die zentrale Eigenschaft, die durch das Wort beschrieben wird, ist wie sehr sich eine Fläche von einer Ebene unterscheidet. Oder auch wie stark sich eine Kurve von einer Geraden unterscheidet. Eine Ebene (bzw.eine Gerade) ist nicht gekrümmt. Mathematisch ausgedrückt haben sie deshalb die Krümmung 0. Wenn man nun untersuchen - und mit einer Zahl ausdrücken - möchte, wie sehr sich z.B. eine Kurve in jedem Punkt von eine Gerade unterscheidet, verwendet man folgenden Trick: Man definiert einen Parameter - z.B. die Bogenlänge - und stellt die Kurve als Funktion dieses Parameters dar. Dann berechnet man die Änderung des Richtungsvektors der Kurve in jedem Punkt. D.h. man braucht die zweite Ableitung nach dem Parameter in dem Punkt. Das Ergebnis für einen Kreis mit Radius r lautet dann: Er hat überall die Krümmung 1/r. Daran sieht man auch, dass kleine Kreise sehr stark gekrümmt sind während sehr große Kreise eine so kleine Krümmung haben, dass man sie fast nicht von einer Geraden unterscheiden kann. Auch die Erdoberfläche wirkt lokal wie eine Ebene, denn in der mit unseren Augen wahrgenommenen Umgebung ist ihre Krümmung klein. Was für Kurven recht anschaulich zu definieren geht, ist für Flächen im dreidimensionalen Raum nicht ganz so klar. Das einzig klare ist, dass für jede Art Krümmung, die man mathematisch definiert, jede Ebene in jedem Punkt die Krümmung 0 haben muss. Wenn man die Idee der Parametrisierung auf Flächen überträgt, geht das im Prinzip auch, wenn man zwei Parameter einführt und Krümmung auf eine bestimmte Richtung im Punkt auf der Fläche entlang bezieht. Beim Zylinder kann man sich gut vorstellen, wie das Ergebnis aussieht: Es gibt die Richtung entlang der Kreislinie des Querschnitts. Diese Kurve ist ein Kreis und hat die Krümmung 1/r. Läuft man dazu im rechten Winkel auf der Zylinderhülle, folgt man einer Gerade (d.h. Krümmung in diese Richtung ist 0). Alle anderen Wege auf der Zylinderoberfläche liegen in Bezug auf die Krümmung zwischen diesen beiden Werten 1/r und 0. Tatsächlich kann man auch für allgemeine Flächen zeigen, dass man in jedem Punkt eine Zerlegung in zwei solche "Haupt"-Richtungen findet, für die maximale bzw. minimale Krümmungswerte gelten (und die senkrecht zueinander sind). Alle anderen Richtungen lassen sich daraus linear zusammensetzen. Die Kugeloberfläche hat z.B. eine hohe Symmetrie und verhält sich in allen Richtungen gleich. Alle Wege auf der Kugeloberfläche sind lokal Teile von Kreisen. Man kann sich hier auch überlegen, was tangential bedeutet, indem man in einem Punkt auf der Oberfläche eine Ebene anschmiegt. Die Richtung senkrecht auf dieser tangentialen Ebene ist die Normalenrichtung auf dem Punkt der Kugeloberfläche an dem die Tangentialebene anliegt. Tatsächlich gibt es für Flächen aber mehr als einen sinnvollen Krümmungsbegriff. Man kann z.B. einen Zylinder sehr schön in Papier "einwickeln". Bei einer Kugel geht das nicht - es bleibt immer Papier übrig, das man wegfalten muss. Wenn man einen Kühlturm einpacken möchte, reicht das Papier nicht für die nach innen einbuchtende Oberfläche. Die Eigenschaft, die wir mir dem Einwickeln veranschaulicht haben, wird mit dem Begriff der Gaußkrümmung ausgedrückt. Um sie zu berechnen, kann man in einem Punkt die oben definierten Richtungsskrümmungen anscha
Freigegeben:
15. Dez. 2016
Format:
Podcastfolge

Titel in dieser Serie (100)

Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen an Autobahnen, in der Medizintechnik bis hin zum Mobiltelefon. Woran die Forscher, Absolventen und Lehrenden in Karlsruhe gerade tüfteln, erfahren wir hier aus erster Hand.